Программы,... Онлайн-сервисы Интернет

Ранговая корреляция кендалла онлайн. Коэффициент ранговой корреляции кендалла. Смотреть что такое "кендалла коэффициент ранговой корреляции" в других словарях

Одним из факторов, ограничивающих применения критериев, основанных на предположении нормальности, является объем выборки. До тех пор пока выборка достаточно большая (например, 100 или больше наблюдений), можно считать, что выборочное распределение нормально, даже если вы не уверены, что распределение переменной в популяции является нормальным. Тем не менее, если выборка мала, эти критерии следует использовать только при наличии уверенности, что переменная действительно имеет нормальное распределение. Однако нет способа проверить это предположение на малой выборке.

Использование критериев, основанных на предположении нормальности, кроме того, ограничено шкалой измерений (см. главу Элементарные понятия анализа данных). Такие статистические методы, как t-критерий, регрессия и т. д. предполагают, что исходные данные непрерывны. Однако имеются ситуации, когда данные, скорее, просто ранжированы (измерены в порядковой шкале), чем измерены точно.

Типичный пример дают рейтинги сайтов в Интернет: первую позицию занимает сайт с максимальным числом посетителей, вторую позицию занимает сайт с максимальным числом посетителей среди оставшихся сайтов (среди сайтов, из которых удален первый сайт) и т. д. Зная рейтинги, мы можем сказать, что число посетителей одного сайта больше числа посетителей другого, но насколько больше, сказать уже нельзя. Представьте, вы имеете 5 сайтов: А, В, С, D, Е, которые располагаются на 5 первых мест. Пусть в текущем месяце мы имели следующую расстановку: А, В, С, D, E, а в предыдущем месяце: D, E, А, В, С. Спрашивается, произошли существенные изменения в рейтингах сайтов или нет? В данной ситуации, очевидно, мы не можем использовать t-критерий, чтобы сравнить эти две группы данных, и переходим в область специфических вероятностных вычислений (а любой статистический критерий содержит в себе вероятностную калькуляцию!). Мы рассуждаем примерно следующим образом: насколько велика вероятность того, что отличие в двух расстановках сайтов вызвано чисто случайными причинами или это отличие слишком велико и не может быть объяснено за счет чистой случайности. В этих рассуждениях мы используем лишь ранги или перестановки сайтов и никак не используем конкретный вид распределения числа посетителей на них.

Для анализа малых выборок и для данных, измеренных в бедных шкалах, применяют непараметрические методы.

Краткий обзор непараметрических процедур

По существу, для каждого параметрического критерия имеется, по крайней мере, одна непараметрическая альтернатива.

В общем, эти процедуры попадают в одну из следующих категорий:

  • критерии различия для независимых выборок;
  • критерии различия для зависимых выборок;
  • оценка степени зависимости между переменными.

Вообще, подход к статистическим критериям в анализе данных должен быть прагматическим и не отягощен лишними теоретическими рассуждениями. Имея в своем распоряжении компьютер с системой STATISTICA, вы легко примените к своим данным несколько критериев. Зная о некоторых подводных камнях методов, вы путем экспериментирования выберете верное решение. Развитие сюжета довольно естественно: если нужно сравнить значения двух переменных, то вы используете t-критерий. Однако следует помнить, что он основан на предположении нормальности и равенстве дисперсий в каждой группе. Освобождение от этих предположений приводит к непараметрическим тестам, которые особенно полезны для малых выборок.

Развитие t-критерия приводит к дисперсионному анализу, который используется, когда число сравниваемых групп больше двух. Соответствующее развитие непараметрических процедур приводит к непараметрическому дисперсионному анализу, правда, существенно более бедному, чем классический дисперсионный анализ.

Для оценки зависимости, или, выражаясь несколько высокопарно, степени тесноты связи, вычисляют коэффициент корреляции Пирсона. Строго говоря, его применение имеет ограничения, связанные, например, с типом шкалы, в которой измерены данные, и нелинейностью зависимости, поэтому в качестве альтернативы используются также непараметрические, или так называемые ранговые, коэффициенты корреляции, применяемые, например, для ранжированных данных. Если данные измерены в номинальной шкале, то их естественно представлять в таблицах сопряженности, в которых используется критерий хи-квадрат Пирсона с различными вариациями и поправками на точность.

Итак, по существу имеется всего несколько типов критериев и процедур, которые нужно знать и уметь использовать в зависимости от специфики данных. Вам нужно определить, какой критерий следует применять в конкретной ситуации.

Непараметрические методы наиболее приемлемы, когда объем выборок мал. Если данных много (например, n >100), часто не имеет смысла использовать непараметрическую статистику.

Если размер выборки очень мал (например, n = 10 или меньше), то уровни значимости для тех непараметрических критериев, которые используют нормальное приближение, можно рассматривать только как грубые оценки.

Различия между независимыми группами . Если имеются две выборки (например, мужчины и женщины), которые нужно сравнить относительно некоторого среднего значения, например, среднего давления или количества лейкоцитов в крови, то можно использовать t-тест для независимых выборок.

Непараметрическими альтернативами этому тесту являются критерий серий Валъда-Волъфовица, Манна-Уитни }/n, где x i - i-е значение, n - число наблюдений. Если переменная содержит отрицательные значения или нуль (0), геометрическое среднее вычислить нельзя.

Гармоническое среднее

Гармоническое среднее иногда используют для усреднения частот. Гармоническое среднее вычисляется по формуле: ГС = n/S(1/х i) где ГС - гармоническое среднее, n - число наблюдений, х i - значение наблюдения с номером i. Если переменная содержит нуль (0), гармоническое среднее вычислить нельзя.

Дисперсия и стандартное отклонение

Выборочная дисперсия и стандартное отклонение - наиболее часто используемые меры изменчивости (вариации) данных. Дисперсия вычисляется как сумма квадратов отклонений значений переменной от выборочного среднего, деленная на п-1 (но не на п). Стандартное отклонение вычисляется как корень квадратный из оценки дисперсии.

Размах

Размах переменной является показателем изменчивости, вычисляется как максимум минус минимум.

Квартильный размах

Квартальный размах, по определению, равен: верхняя квартиль минус нижняя квартиль (75% процентиль минус 25% процентиль). Так как 75% процентиль (верхняя квартиль) - это значение, слева от которого находятся 75% наблюдений, а 25% процентиль (нижняя квартиль) - это значение, слева от которого находится 25% наблюдении, то квартильный размах представляет собой интервал вокруг медианы, который содержит 50% наблюдений (значений переменной).

Асимметрия

Асимметрия - это характеристика формы распределения. Распределение скошено влево, если значение асимметрии отрицательно. Распределение скошено вправо, если асимметрия положительна. Асимметрия стандартного нормального распределения равна 0. Асимметрия связана с третьим моментом и определяется как: асимметрия = n × М 3 /[(n-1) × (n-2) × s 3 ], где М 3 равно: (х i -xсреднее x) 3 , s 3 - стандартное отклонение, возведенное в третью степень, n - число наблюдений.

Эксцесс

Эксцесс - это характеристика формы распределения, а именно мера остроты его пика (относительно нормального распределения, эксцесс которого равен 0). Как правило, распределения с более острым пиком, чем у нормального, имеют положительный эксцесс; распределения, пик которых менее острый, чем пик нормального распределения, имеют отрицательный эксцесс. Эксцесс связан с четвертым моментом и определяется формулой:

эксцесс = /[(n-1) × (n-2) × (n-3) × s 4 ], где M j равно: (х-хсреднее x , s 4 - стандартное отклонение в четвертой степени, n - число наблюдений.

Представление и предварительная обработка оценок экспертов

В практике используется несколько видов оценок:

- качественные (часто-редко, хуже-лучше, да-нет),

- шкальные оценки (интервалы значений 50-75, 76-90, 91-120 и т.п.),

Балльныеиз заданного интервала (от 2 до 5, 1 -10), взаимно независимые,

Ранговые (объекты располагаются экспертом в определенном порядке, и каждому приписывается порядковый номер – ранг),

Сравнительные, полученные одним из методов сравнения

метод последовательных сравнений

метод попарного сравнения факторов.

На следующем шаге обработки мнений экспертов необходимо оценить степень согласованности этих мнений.

Оценки, полученные от экспертов, могут рассматриваться как случайная переменная, распределение которой отражает мнения экспертов о вероятности того или иного выбора события (фактора). Поэтому для анализа разброса и согласованности оценок экспертов применяются обобщенные статистические характеристики – средние и меры разброса:

Средняя квадратичная ошибка,

Вариационный размах min – maх,

- коэффициент вариации V =ср.квадр.откл./ средняя арифм. (подходит для любого типа оценок)

V i = σ i / x i ср

Для оценки меры сходств а мнений каждой пары экспертов могут быть использованы самые разные методы:

коэффициенты ассоциации , с помощью которых учитывается число совпадающих и несовпадающих ответов,

коэффициенты противоречивости мнений экспертов,

Все эти меры можно использовать либо для сравнения мнений двух экспертов, либо для анализа связи между рядами оценок по двум признакам.

Коэффициент парной ранговой корреляции Спирмена:

где n – число экспертов,

c k – разность оценок i-го и j-го экспертов по всем T факторам

Коэффициент ранговой корреляции Кендалла (коэффициент конкордации) дает общую оценку согласованности мнений всех экспертов по всем факторам, но только для случаев, когда использовались ранговые оценки.

Доказано, что величина S, когда все эксперты дают одинаковые оценки всех факторов, имеет максимальное значение, равное

где n – число факторов,

m – количество экспертов.

Коэффициент конкордации равен отношению

причем если W близок к 1, то все эксперты дали достаточно согласованные оценки, иначе их мнения не согласованы.

Формула для расчета S приведена ниже:

где r ij - ранговые оценки i-го фактора j-ым экспертом,

r ср - средний ранг по всей матрице оценок и равен

И следовательно формула расчета S может принять вид:

В случае, если отдельные оценки у одного эксперта совпадают, и их при обработке сделали стандартизированными, то для вычисления коэффициента конкордации используется другая формула:



где Т j рассчитывается для каждого эксперта (в том случае, если его оценки повторялись для разных объектов) с учетом повторений по следующим правилам:

где t j - число групп равных рангов у j-го эксперта, а

h k - число равных рангов в k-ой группе связанных рангов j-го эксперта.

ПРИМЕР. Пусть 5 экспертов по шести факторам ответили при ранжировании так, как показано в таблице 3:

Таблица 3 – Ответы экспертов

Эксперты О1 О2 О3 О4 О5 О6 Сумма рангов по эксперту
Э1
Э2
Э3
Э4
Э5

В связи с тем, что получено не строгое ранжирование (оценки у экспертов повторяются, а суммы рангов не равны), произведем преобразование оценок и получим связанные ранги (таблица 4):

Таблица 4 – Связанные ранги оценок экспертов

Эксперты О1 О2 О3 О4 О5 О6 Сумма рангов по эксперту
Э1 2,5 2,5
Э2
Э3 1,5 1,5 4,5 4,5
Э4 2,5 2,5 4,5 4,5
Э5 5,5 5,5
Сумма рангов по объекту 7,5 9,5 23,5 29,5

Теперь определим степень согласованности мнений экспертов с помощью коэффициента конкордации. Так как ранги связанные, будем вычислять W по формуле (**).

Тогда r ср =7*5/2=17,5

S = 10 2 +8 2 +4.5 2 +4.5 2 +6 2 +12 2 = 384.5

Перейдем к расчетам W. Для этого вычислим отдельно значения T j . В примере специально так подобраны оценки, что у каждого эксперта есть повторяющиеся оценки: у 1-го их две, у второго - три, у третьего - две группы по две оценки, так же и у четвертого, у пятого - две одинаковые оценки. Отсюда:

Т 1 = 2 3 – 2 = 6 Т 5 = 6

Т 2 = 3 3 – 3 = 24

Т 3 = 2 3 –2+ 2 3 –2 = 12 Т 4 = 12

Мы видим, что согласованность мнений экспертов достаточно высокая и можно переходить к следующему этапу исследования – обоснованию и принятию рекомендованной экспертами альтернативы решения.

В противном случае необходимо вернуться к этапам 4-8.

При ранжировании эксперт должен расположить оцениваемые элементы в порядке возрастания (убывания) их предпочтительности и приписать каждому из них ранги в виде натураль­ных чисел. При прямом ранжировании наиболее предпочтительный элемент имеет ранг 1 (иногда 0), а наименее предпочтительный - ранг m.

Если эксперт не может осуществить строгое ранжирование из-за того, что, по его мнению, некоторые элементы одинаковы по предпочтительности, то допускается присваивать таким элементам одинаковые ранги. Чтобы обеспечить равенство суммы рангов сумме мест ранжируемых элементов, применяют так называемые стандарти­зированные ранги. Стандартизированный ранг есть среднее арифмети­ческое номеров элементов в ранжиро­ванном ряду, являющихся одинако­выми по предпочтительности.

Пример 2.6. Эксперт упорядочил шесть элементов по предпочтению следующим образом:

Тогда стандартизированные ранги этих элементов будут

Таким образом, сумма рангов, приписанных элементам, будет равна сумме чисел натурального ряда.

Точность выражения предпочтения путем ранжирования элементов существенно зависит от мощности мно­жества предъявлений. Процедура ранжирования дает наиболее надежные результаты (по степени близости выявленного предпочтения и «истинного»), когда число оцениваемых элементов не более 10. Предельная мощность множества предъявления не должна превосходить 20.

Обработка и анализ ранжировок проводятся с целью построения группового отношения предпочтения на основе индивидуальных предпочтений. При этом могут ставиться следующие задачи: а) определение тесноты связи между ранжировками двух экспертов на элементах множества предъявлений; б) определение взаимосвязи между двумя элементами по индивидуальным мнениям членов группы относительно различных характеристик этих элементов; в) оценка согласованности мне­ний экспертов в группе, содержа­щей более двух экспертов.

В первых двух случаях в качестве меры тесноты связи используется коэффициент ранговой корреляции. В за­висимости от того, допускается ли только строгое или нестрогое ранжи­рование, используется коэффициент ранговой корреляции либо Кендалла, либо Спирмена.

Коэффициент ранговой корреляции Кендалла для задачи (a)

где m − число элементов; r 1 i – ранг,приписанный первым экспертом i −му элементу; r 2 i – то же, вторым экспертом.

Для задачи (б) компоненты (2.5) имеют следующий смысл: т - число характеристик двух оцениваемых эле­ментов; r 1 i (r 2 i) - ранг i-й характеристики в ранжировке первого (второго) элемента, выставленный группой экс­пертов.

При строгом ранжировании исполь­зуется коэффициент ранговой корреляции р Спирмена:


компоненты которого имеют тот же смысл, что и в (2.5).

Коэффициенты корреляции (2.5), (2.6) изменяются от -1 до +1. Если коэффициент корреляции равен +1, то это означает, что ранжировки одинаковы; если он равен -1, то − противоположны (ранжировки обратны друг другу). Равенство коэффициента корреляции нулю означает, что ран­жировки линейно независимы (некоррелированы).

Поскольку при таком подходе (эк­сперт − «измеритель» со случайной погрешностью) индивидуальные ран­жировки рассматриваются как случай­ные, то возникает задача статистиче­ской проверки гипотезы о значимости полученного коэффициента корреля­ции. В этом случае используют крите­рий Неймана-Пирсона: зада­ются уровнем значимости критерия α и, зная законы распределения коэффи­циента корреляции, определяют поро­говое значение c α , с которым сравни­вают полученное значение коэффици­ента корреляции. Критическая об­ласть − правосторонняя (в практике обычно сначала расчитывают значение критерия и определяют по нему уро­вень значимости, который сравнивают с пороговым уровнем α ).

Коэффициент ранговой корреляции τ Кендалла имеет при т > 10 распре­деление, близкое к нормальному с па­раметрами:

где M [τ] – математическое ожидание; D [τ] – дисперсия.

В этом случае используются таблицы функции стандартного нормального распределения:

а граница τ α критической области определяется как корень уравнения

Если вычисленное значение коэф­фициента τ ≥ τ α , то считается, что ранжировки, действительно хорошо согласуются. Обычно значение α вы­бирают в пределах 0,01-0,05. Для т ≤ 10 распределение т приведено в табл. 2.1.

Проверка значимости согласован­ности двух ранжировок с использованием коэффициента ρСпирмена осу­ществляется в том же порядке с ис­пользованием таблиц распределения Стьюдента при т > 10.

В этом случае величина

имеет распределение, хорошо аппроксимируемое распределением Стьюдента с m – 2 степенями свободы. При m > 30 распределение величины ρ хорошо согласуется с нормальным, имеющим M [ρ] = 0 и D [ρ] = .

Для т ≤ 10 проверку значимости ρ осуществляют с помощью табл. 2.2.

Если ранжировки нестрогие, то коэффициент Спирмена

где ρ – вычисляют по (2.6);

где k 1 , k 2 − число различных групп нестрогих рангов в первой и второй ранжировках соответственно; l i − число одинаковых рангов в i -й группе. При практическом использовании ко­эффициентов ранговой корреляции ρ Спирмена и τ Кендалла следует иметь в виду, что коэффициент ρ обеспечивает более точный результат в смысле ми­нимума дисперсии.

Таблица 2.1. Распределение коэффициента ранговой корреляции Кендалла

Для вычисления коэффициента Кендалла значения факторного признака предварительно ранжируют, то есть ранги по Х записывают строго в порядке возрастания количественных значений.

1) Для каждого ранга по Y находят общее количество следующих за ним рангов, больших по значению, чем данный ранг. Общее количество таких случаев учитывают со знаком “+” и обозначают P.

2) Для каждого ранга по Y определяют количество следующих за ним рангов, меньших по значению, чем данный ранг. Общее количество таких случаев учитывают со знаком “-” и обозначают Q.

3) Рассчитывают S=P+Q=9+(-1)=8

4) Коэффициент Кенделла вычисляют по формуле:

Коэффициент Кенделла может принимать значения от -1 до +1 и чем ближе к , тем сильнее связь между признаками.

В некоторых случаях для определения направления связи между двумя признаками вычисляют коэффициент Фехнера . Этот коэффициент основан на сравнении поведения отклонений индивидуальных значений факторного и результативного признаков от своей средней величины. Коэффициент Фехнера вычисляют по формуле:

; где сумма С - общее число совпадений знаков отклонений, сумма Н - общее число несовпадений знаков отклонений.

1) Вычисляют среднюю величину факторного признака:

2) Определяют знаки отклонений индивидуальных значений факторного признака от средней величины.

3) Рассчитывают среднюю величину результативного признака: .

4) Находят знаки отклонений индивидуальных значений результативного признака от средней величины:

Вывод : связь прямая, о тесноте связи коэффициент не говорит.

Для определения степени тесноты связи между тремя ранжированными признаками вычисляют коэффициент конкордации. Он рассчитывается по формуле:

, где m - число ранжированных признаков; n - число ранжированных единиц наблюдения.

Отрасли промышленности X1 X2 X3 R1 R2 R3
Электроэнергетика 7,49
Топливная 12,70
Черная М. 5,92
Цветная М. 9,48
Машиностроение 4,18
Итог:

X1 - число работников (тыс. чел.); X2 - объем промышленных продаж (млрд. руб.); X3 - среднемесячная зарплата.

1) Значения всех признаков ранжируем и ранги устанавливаем строго в порядке возрастания количественных значений.

2) По каждой строке определяют сумму рангов. По этому столбцу вычисляется итоговая строка.

3) Вычисляют .

4) По каждой строке находят квадраты отклонений сумм рангов и величин Т. По этому же столбцу рассчитаем итоговую строку, которую обозначим через S. Коэффициент конкордации может принимать значения от 0 до 1 и чем ближе к 1, тем сильнее связь между признаками.