Программы,... Онлайн-сервисы Интернет

Спектральная плотность сигналов. Примеры определения спектральной плотности сигналов Международная образовательная корпорация

1) По своему физическому смыслу спектр мощности вещественен и неотрицателен:

Поэтому по спектру мощности принципиально невозможно восстановить какую - либо отдельно взятую реализацию случайного процесса.

2) Поскольку чётная функция аргумента , то соответствующий спектр мощности представляет собой чётную функцию частоты . Отсюда следует, что пару преобразований Фурье (6.14), (6.15) можно записать, используя интегралы в полубесконечных пределах:

(6.17)

(6.18)

3. Целесообразно ввести так называемый односторонний спектр мощности случайного процесса, определив его следующим образом:

(6.19)

Функция позволяет вычислить дисперсию стационарного случайного процесса путём интегрирования по положительным (физическим частотам):

(6.20)

4. В технических расчётах часто вводят односторонний спектр мощности N(f), представляющий собой среднюю мощность случайного процесса, приходящуюся на интервал частот шириной в 1 Гц:

(6.21)

При этом, как легко видеть

Весьма важным параметром случайных процессов является интервал корреляции. Случайные процессы, как правило, обладают следующими свойствами: их функция корреляции стремится к нулю с увеличением временного сдвига . Чем быстрее убывает функция , тем меньше оказывается статистическая связь между мгновенными значениями случайного сигнала в два несовпадающих момента времени.

Числовой характеристикой, служащей для оценки «скорости изменения» реализации случайного процесса, является интервал корреляции определяемый выражением:

(6.22)

Если известна информация о поведении какой-либо реализации «в прошлом», то возможен вероятностный прогноз случайного процесса на время порядка .

Ещё одним существенным параметром для случайного процесса является эффективная ширина спектра. Пусть исследуемый случайный процесс характеризуется функцией - односторонним спектром мощности, причём - экстремальное значение этой функции. Заменим мысленно данный случайный процесс другим процессом, у которого спектральная плотность мощности постоянна и равна в пределах эффективной полосы частот , выбираемой из условия равенства средних мощностей обоих процессов:

Отсюда получается формула для эффективной ширины спектра:

(6.23)

Вне пределов указанной полосы спектральная плотность случайного процесса считается равной 0.

Этой числовой характеристикой часто пользуются для инженерного расчёта дисперсии шумового сигнала: .



Если реализации случайного процесса имеют размерность напряжения (В), то относительный спектр мощности N имеет размерность .

Белый шум и его свойства. Гауссовский случайный процесс.

А) Белый шум.

стационарный случайный процесс с постоянной на всех частотах спектральной плотностью мощности называется белым шумом.

(7.1)

По теореме Винера-Хинчина функция корреляции белого шума:

равна нулю всюду кроме точки . Средняя мощность (дисперсия) белого шума неограниченно велика.

Белый шум является дельта-коррелированным процессом. Некоррелированность мгновенных значений такого случайного сигнала означает бесконечно большую скорость изменения их во времени – как бы мал ни был интервал , сигнал за это время может измениться на любую наперёд заданную величину.

Белый шум является абстрактной математической моделью и отвечающий ему физический процесс, безусловно, не существует в природе. Однако это не мешает приближённо заменять реальные достаточно широкополосные случайные процессы белым шумом в тех случаях, когда полоса пропускания цепи, на которую воздействует случайный сигнал, оказывается существенно уже эффективной ширины спектра шума.

В теории управления существуют и взаимно дополняют друг друга два подхода:

1) временнóй – исследование процессов во времени;

2) частотный – исследование частотных свойств сигналов и систем (с помощью передаточных функций и частотных характеристик).

Аналогичная ситуация наблюдается и при рассмотрении случайных процессов. Основная временная характеристика стационарного процесса – это корреляционная функция, а частотные свойства описываются спектральной плотностью.

Спектральная плотность – это функция, которая показывает распределение мощности сигнала по частотам. Такая информация о полезных сигналах, помехах и возмущениях очень важна для разработчика систем управления. Система должна быть спроектирована так, чтобы усиливать сигналы с «полезными» частотами и подавлять «вредные» частоты, характерные для помех и возмущений.

Для перехода от временнóго описания детерминированных (не случайных) процессов к частотному, используют преобразования Фурье и Лапласа. Аналогично спектральная плотность случайного процесса может быть найдена как преобразование Фурье от корреляционной функции:

Здесь – мнимая единица, а – угловая частота в рад/с ( , где – «обычная» частота в герцах). Используя формулу Эйлера, можно представить экспоненту в виде сумму вещественной (косинусной) и мнимой (синусной) составляющих: . Функция – нечетная по , поэтому интеграл от нее в симметричных пределах равен нулю. Напротив, функция – четная, так что при интегрировании можно взять интервал от 0 до и удвоить результат:

Спектральная плотность чем-то похожа на плотность распределения вероятностей, только она характеризует плотность распределения мощности сигнала по частотам. Если случайный процесс – это напряжение в вольтах, то его корреляционная функция измеряется в В 2 , а спектральная плотность – в В 2 /Гц.

Спектральная плотность случайного процесса, имеющего корреляционную функцию , вычисляется как

Интервал интегрирования разбит на две части. При имеем , а при – . Выполняя интегрирование, получаем

На рисунке слева показана корреляционная функция, а справа – соответствующая ей спектральная плотность мощности:

Свойства спектральной плотности:

1) это неотрицательная, четная функция угловой частоты (график расположен выше оси абсцисс и симметричен относительно вертикальной оси);

2) интеграл от на некотором интервале частот дает мощность, которая связана с этими частотами; поскольку функция – четная, результат интегрирования на нужно удвоить, чтобы учесть также и полосу ;

3) площадь под кривой определяет средний квадрат случайного процесса (для центрированного процесса он равен дисперсии):

Множитель нужен для согласования единиц измерения, поскольку угловая частота измеряется не в герцах, а в рад/с. Учитывая, что функция четная, можно интегрировать ее только при , а результат удвоить.

Оценка спектральной плотности мощности представляет известную проблему для случайных процессов. Примерами случайных процессов может служить шум, а также сигналы, несущие информацию. Обычно требуется найти статистически устойчивую оценку. Анализ сигналов подробно рассматривается в курсе «Цифровая обработка сигналов» . Начальные сведения изложены в .

Для сигналов с известными статистическими характеристиками спектральный состав может быть определен по конечному интервалу этого сигнала. При неизвестности статистических характеристик сигнала по отрезку сигнала можно получить только оценку его спектра. Разные методы использую различные допущения, и поэтому дают различные оценки.

При выборе оценки исходят из того, что в общем случае анализируемый сигнал представляет собой случайный процесс. И требуется выбрать несмещенную оценку, обладающую малой дисперсией, позволяющую усреднить спектр сигнала. Смещением называют разницу между средним значением оценки и истинным значением величины. Несмещенной оценкой называют оценку с нулевым смещением. Оценка с малой дисперсией хорошо локализует искомые величины, т.е. плотность вероятности сконцентрирована около среднего значения. Желательно иметь состоятельную оценку, т.е. оценку, которая при увеличении размера выборки стремится к истинному значению (смещение и дисперсия стремятся к нулю). Различают оценки параметрические, использующие только информацию о самом сигнале и непараметрические, использующие статистическую модель случайного сигнала, и осуществляющие подбор параметров этой модели.

При оценках случайных процессов распространено использование корреляционных функций.

Для эргодичного процесса возможно определение статистических параметров процесса путем усреднения по одной реализации.

Для стационарного случайного процесса корреляционная функция R x (t) зависит от интервала времени, для которого она определяется. Эта величина характеризует связь между значениями x(t), разделенными промежутком t. Чем медленнее убывает R(t), тем больше промежуток, в течение которого наблюдается статистическая связь между значениями случайного процесса.

где - математическое ожидание x(t).

Соотношение между корреляционной функцией R(t) и спектральной плотностью мощности W(w) для случайного процесса определяется теоремой Винера-Хинчина

Для дискретных процессов теорема Винера-Хинчина устанавливает связь между спектром дискретного случайного процесса W(w) и его корреляционной функции R x (n)

W(w)= R x (n)·exp(-j·w·n·T)

Для оценки энергии сигнала во временной и частотной областях используется равенство Парсеваля



Одним из распространенных способов получения оценки спектральной плотности является применение метода периодограмм.

Периодограмма (Periodogram) .В этом методе производится дискретное преобразование Фурье для сигнала x(n), заданного в дискретных точках выборки длиной N отсчетов и его статистическое усреднение. Фактическое вычисление спектра X(k), выполняется только в конечном количестве частотных точек N. Применяется быстрое преобразование Фурье (FFT). Вычисляется спектральная плотность мощности, приходящаяся на один отсчет выборки:

P xx (X k)=|X(k)| 2 /N, X(k)= , k=0,1,…,N-1.

Для получения статистически устойчивой оценки, имеющиеся данные разбивают на перекрывающиеся выборки, с последующим усреднением спектров, полученных по каждой выборке. Задается число отсчетов на выборку N и сдвиг начала каждой последующей выборки относительно начала предыдущей N t . Чем меньше число отсчетов в выборке, тем больше выборок и меньшая дисперсия у оценок. Но поскольку длина выборки N связана с частотным разрешением (2.4), то уменьшение длины выборки ведет к уменьшению частотного разрешения.

Таким образом, сигнал просматривается через окно, а данные, не попадающие в окно, принимаются равными нулю. Конечный сигнал x(n) состоящий из N отсчетов, обычно представляют как результат умножения бесконечного по времени сигнала (n) на прямоугольное окно с конечной длиной w R (n):

x(n) = (n) ∙w R (n),

а непрерывный спектр X N (f) наблюдаемых сигналов x(n) определится как свертка Фурье-образов X(f), W R (f) бесконечного по времени сигнала (n) ∙и окна w R (n)



X N (f)=X(f)*W R (f)=

Спектр непрерывного прямоугольного окна (rect) имеет форму интегрального синуса sinc(x)=sin(x)/x. Он содержит главный «лепесток» и несколько боковых, из которых самый большой приблизительно на 13 dB ниже основного пика (см. рис.15).

Фурье-образ (спектр) дискретной последовательности, получаемой N-точечной дискретизацией непрерывного прямоугольного окна, показан на рис.32. Он может быть вычислен суммированием смещенных интегральных синусов (2.9), в результате получается ядро Дирихле

Рис. 32. Спектр дискретного прямоугольного окна

В то время как сигнал с бесконечной длиной сконцентрирует его мощность точно в дискретной частоте f k , прямоугольная выборка сигнала имеет распределенный спектр мощности. Чем короче выборка, тем более распределенный спектр.

При спектральном анализе производится взвешивание данных с помощью оконных функций, чем добиваются уменьшения влияния боковых «лепестков» на спектральные оценки.

Чтобы обнаружить две гармоники f 1 и f 2 с близкими частотами, необходимо, чтобы для временного окна T ширина главного «лепестка» Df -3 ≈ Df L =0 =1/Т, определяемая на значении -3дБ, была меньше разности искомых частот

Df=f 1 -f 2 > Df -3

Ширина временного окна Т связана с частотой дискретизацией f s и числом отсчетов выборки формулой (2.4).

Инструментальные средства гармонического анализа . Для исследования сигналов очень удобно применение пакета MATLAB, в частности, его приложения (Toolbox) Signal Processing.

Модифицированные периодограммы используют непрямоугольные оконные функции, уменьшающие эффект Гиббса. Примером может служить использование окна Хэмминга (Hamming). Но при этом одновременно происходит примерно вдвое увеличение ширины главного лепестка спектрограммы. Несколько более оптимизировано окно Кайзера (Kaiser). Увеличение ширины главных лепестков при создании фильтров нижних частот ведет к увеличению переходной полосы (между полосами пропускания и задержания).

Оценочная функция Уэлча (Welch) . Метод состоит из деления последовательных данных времени в сегменты (возможно с перекрытием), далее обрабатывается каждый сегмент, а затем оценивают спектр путем усреднения результатов обработки сегментов. Для улучшения оценки могут использоваться непрямоугольные оконные функции, например окно Хэмминга. Увеличение числа сегментов уменьшает дисперсию, но при этом уменьшается разрешение метода по частоте. Метод дает неплохие результаты при малом превышении полезного сигнала над шумом и достаточно часто используется на практике.

На рис.33 приведены оценки гармонического состава для данных, содержащих узкополосые полезные сигналы и белый шум, при различных выборках (N=100, N=67), и использовании различных методов.

Рис. 33. Оценка гармоник сигнала для 1024 точечного FFT-преобразования

Параметрические методы используют авторегрессионные модели (AR). В методах строятся модели фильтров и с их помощью оценивают спектры сигналов. Все методы при наличии шума в сигнале дают смещенные оценки. Предназначены методы для обработки сигналов имеющих гармонические составляющие на фоне шума. Порядок метода (фильтра) задается в два раза больше, чем число гармоник, присутствующих в сигнале. Предложено несколько параметрических методов .

Метод Берга (Burg) дает высокую разрешающую способность по частоте для коротких выборок. При большом порядке фильтра спектральные пики расщепляются. Положение спектральных пиков зависит от начальных фаз гармонических.

Ковариационный (covariance) метод позволяет оценить спектр сигнала, содержащего сумму гармонических компонентов.

Метод Юла-Уоркера (Yule-Walker) дает хорошие результаты на длинных выборках и не рекомендуется для коротких выборок.

Корреляционные методы . Методы MISIC (Multiple Signal Classification) и EV (eigenvectors) выдают результаты в форме псевдоспектра. В основе методов лежит анализ векторов корреляционной матрицы сигнала. Эти методы дают несколько лучшее разрешение по частоте, чем автокорреляционные методы.

Величина, характеризующая распределение энергии по спектру сигнала и называемая энергетической спектральной плотностью, существует лишь для сигналов, У которых энергия за бесконечный интервал времени конечна и, следовательно, к ним применимо преобразование Фурье.

Для незатухающих во времени сигналов энергия бесконечно велика и интеграл (1.54) расходится. Задание спектра амплитуд невозможно. Однако средняя мощность Рср, определяемая соотношением

оказывается конечной. Поэтому применяется более широкое понятие "спектральная плотность мощности". Определим ее как производную средней мощности сигнала по частоте и обозначим Сk(щ):

Индексом k подчеркивается, что здесь мы рассматриваем спектральную плотность мощности как характеристику детерминированной функции u(t), описывающей реализацию сигнала.

Эта характеристика сигнала менее содержательна, чем спектральная плотность амплитуд, так как лишена фазовой информации [см. (1.38)]. Поэтому однозначно восстановить по ней исходную реализацию сигнала невозможно. Однако отсутствие фазовой информации позволяет применить это понятие к сигналам, у которых фаза не определена.

Для установления связи между спектральной плотностью Сk(щ) и спектром амплитуд воспользуемся сигналом u(t), существующим на ограниченном интервале времени (-T<. t

где - спектральная плотность мощности сигнала, ограниченного во времени.

В дальнейшем будет показано (см. § 1.11), что, усредняя эту характеристику по множеству реализаций, можно получить спектральную плотность мощности для большого класса случайных процессов.

Функция автокорреляции детерминированного сигнала

Теперь в частотной области имеется две характеристики: спектральная характеристика и спектральная плотность мощности. Спектральной характеристике, содержащей полную информацию о сигнале u(t), соответствует преобразование Фурье в виде временной функции. Выясним, чему соответствует во временной области спектральная плотность мощности, лишенная фазовой информации.

Следует предположить, что одной и той же спектральной плотности мощности соответствует множество временных функций, различающихся фазами. Советским ученым Л.Я. Хинчиным и американским ученым Н. Винером практически одновременно было найдено обратное преобразование Фурье от спектральной плотности мощности:


Обобщенную временную функцию r(), не содержащую фазовой информации, назовем временной автокорреляционной функцией. Она показывает степень связи значений функции u(t), разделенных интервалом времени, и может быть получена из статистической теории путем развития понятия коэффициента корреляции. Отметим, что во временной функции корреляции усреднение проводится по времени в пределах одной реализации достаточно большой продолжительности.

Справедливо и второе интегральное соотношение для пары преобразования Фурье:

Пример 1.6 Определить временную функцию· автокорреляции гармонического сигнала u(t) = u0 cos(t-ц). В соответствии с (1.64)

Проведя несложные преобразования


окончательно имеем

Как и следовало ожидать, ru() не зависит от ц и, следовательно, (1.66) справедливо для целого множества гармоник, различающихся фазами.

Пусть сигнал s (t ) задан в виде непериодической функции, причем он существует только на интервале (t 1 ,t 2) (пример - одиночный импульс). Выберем произвольный отрезок времени T , включающий в себя интервал (t 1 ,t 2) (см. рис.1).

Обозначим периодический сигнал, полученный из s (t ), в виде (t ). Тогда для него можно записать ряд Фурье

Для того, чтобы перейти к функции s (t ) следует в выражении (t ) устремить период к бесконечности. При этом число гармонических составляющих с частотами w =n 2p /T будет бесконечно велико, расстояние между ними будет стремиться к нулю (к бесконечно малой величине:

амплитуды составляющих также будут бесконечно малы. Поэтому говорить о спектре такого сигнала уже нельзя,т.к.спектр становится сплошным.

Внутренний интеграл является функцией частоты. Его называют спектральной плотностью сигнала, или частотной характеристикой сигнала и обозначают т.е.

Пределы интегрирования можно для общности поставить бесконечными, так как все равно там, где s(t) равна нулю, и интеграл равен нулю.

Выражение для спектральной плотности называют прямым преобразованием Фурье. Обратное преобразование Фурье определяет временную функцию сигнала по его спектральной плотности

рямое (*) и обратное (**) преобразования Фурье вместе называют парой преобразований Фурье. Модуль спектральной плотности

определяет амплитудно-частотную характеристику (АЧХ) сигнала, а ее аргумент называют фазо-частотной характеристикой (ФЧХ) сигнала. АЧХ сигнала является четной функцией, а ФЧХ - нечетной.

Смысл модуля S (w ) определяется как амплитуда сигнала (тока или напряжения), приходящаяся на 1 Гц в бесконечно узкой полосе частот, которая включает в себя рассматриваемую частоту w . Его размерность - [сигнал/частота].

Энергетический спектр сигнала. Если функция s(t) имеет фурье-плотность мощности сигнала (спектральная плотность энергии сигнала ) определяется выражением:

w(t) = s(t)s*(t) = |s(t)|2  |S()|2 = S()S*() = W(). (5.2.9)

Спектр мощности W()-вещественная неотрицательная четная функция, которую обычно называют энергетическим спектром. Спектр мощности, как квадрат модуля спектральной плотности сигнала, не содержит фазовой информации о его частотных составляющих, а, следовательно, восстановление сигнала по спектру мощности невозможно. Это означает также, что сигналы с различными фазовыми характеристиками могут иметь одинаковые спектры мощности. В частности, сдвиг сигнала не отражается на его спектре мощности. Последнее позволяет получить выражение для энергетического спектра непосредственно из выражений (5.2.7). В пределе, для одинаковых сигналов u(t) и v(t) при сдвиге t 0, мнимая часть спектра Wuv () стремится к нулевым значениям, а реальная часть - к значениям модуля спектра. При полном временном совмещении сигналов имеем:

т.е. энергия сигнала равна интегралу квадрата модуля его частотного спектра - сумме энергии его частотных составляющих, и всегда является вещественной величиной.

Для произвольного сигнала s(t) равенство

обычно называют равенством Парсеваля (в математике – теоремой Планшереля, в физике – формулой Релея). Равенство очевидно, так как координатное и частотное представления по существу только разные математические отображения одного и того же сигнала. Аналогично для энергии взаимодействия двух сигналов:

Из равенства Парсеваля следует инвариантность скалярного произведения сигналов и нормы относительно преобразования Фурье:

В целом ряде чисто практических задач регистрации и передачи сигналов энергетический спектр сигнала имеет весьма существенное значение. Периодические сигналы переводятся в спектральную область в виде рядов Фурье. Запишем периодический сигнал с периодом Т в виде ряда Фурье в комплексной форме:

Интервал 0-Т содержит целое число периодов всех подынтегральных экспонент, и равен нулю, за исключением экспоненты при k = -m, для которой интеграл равен Т. Соответственно, средняя мощность периодического сигнала равна сумме квадратов модулей коэффициентов его ряда Фурье:

Энергетический спектр сигнала – это распределение энергии базисных сигналов, которые составляют негармонический сигнал, на оси частот. Математически энергетический спектр сигнала равен квадрату модуля спектральной функции:

Соответственно амплитудно-частотный спектр показывает множество амплитуд составляющих базисных сигналов на частотной оси, а фазо-частотный – множество фаз

Модуль спектральной функции часто называют амплитудным спектром , а ее аргумент – фазовым спектром .

Кроме того, существует и обратное преобразование Фурье, позволяющее восстановить исходный сигнал, зная его спектральную функцию:

Например, возьмем прямогульный импульс:

Еще один пример спектров:

Частота Найквиста, теорема Котельникова .

Частота Найквиста - в цифровой обработке сигналов частота, равная половине частоты дискретизации. Названа в честь Гарри Найквиста. Из теоремы Котельникова следует, что при дискретизации аналогового сигнала потерь информации не будет только в том случае, если спектр (спектральная плотность)(наивысшая частота полезного сигнала) сигнала равен или ниже частоты Найквиста. В противном случае при восстановлении аналогового сигнала будет иметь место наложение спектральных «хвостов» (подмена частот, маскировка частот), и форма восстановленного сигнала будет искажена. Если спектр сигнала не имеет составляющих выше частоты Найквиста, то он может быть (теоретически) продискретизирован и затем восстановлен без искажений. Фактически «оцифровка» сигнала (превращение аналогового сигнала в цифровой) сопряжена с квантованием отсчѐтов - каждый отсчѐт записывается в виде цифрового кода конечной разрядности, в результате чего к отсчетам добавляются ошибки квантования (округления), при определенных условиях рассматриваемые как «шум квантования».

Реальные сигналы конечной длительности всегда имеют бесконечно широкий спектр, более или менее быстро убывающий с ростом частоты. Поэтому дискретизация сигналов всегда приводит к потерям информации (искажению формы сигнала при дискретизации-восстановлении), как бы ни была высока частота дискретизации. При выбранной частоте дискретизации искажение можно уменьшить, если обеспечить подавление спектральных составляющих аналогового сигнала (до дискретизации), лежащих выше частоты Найквиста, для чего требуется фильтр очень высокого порядка, чтобы избежать наложения «хвостов». Практическая реализация такого фильтра весьма сложна, так как амплитудно-частотные характеристики фильтров имеют не прямоугольную, а гладкую форму, и образуется некоторая переходная полоса частот между полосой пропускания и полосой подавления. Поэтому частоту дискретизации выбирают с запасом, к примеру, в аудио компакт-дисках используется частота дискретизации 44100 Герц, в то время как высшей частотой в спектре звуковых сигналов считается частота 20000 Гц. Запас по частоте Найквиста в 44100 / 2 - 20000 = 2050 Гц позволяет избежать подмены частот при использовании реализуемого фильтра невысокого порядка.

Теорема Котельникова

Для того, чтобы восстановить исходный непрерывный сигнал из дискретизированного с малыми искажениями (погрешностями), необходимо рационально выбрать шаг дискретизации. Поэтому при преобразовании аналогового сигнала в дискретный обязательно возникает вопрос о величине шага дискретизации Интуитивно нетрудно понять следующую идею. Если аналоговый сигнал обладает низкочастотным спектром, ограниченным некоторой верхней частотой Fe, (т.е. функция u(t) имеет вид плавно изменяющейся кривой, без резких изменений амплитуды), то вряд ли на некотором небольшом временном интервале дискретизации эта функция может существенно изменяться по амплитуде. Совершенно очевидно, что точность восстановления аналогового сигнала по последовательности его отсчетов зависит от величины интервала дискретизации Чем он короче, тем меньше будет отличаться функция u(t) от плавной кривой, проходящей через точки отсчетов. Однако с уменьшением интервала дискретизации существенно возрастает сложность и объем обрабатывающей аппаратуры. При достаточно большом интервале дискретизации возрастает вероятность искажения или потери информации при восстановлении аналогового сигнала. Оптимальная величина интервала дискретизации устанавливается теоремой Котельникова (другие названия - теорема отсчетов, теорема К. Шеннона, теорема X. Найквиста: впервые теорема была открыта в математике О. Коши, а затем описана повторно Д. Карсоном и Р. Хартли), доказанной им в 1933 г. Теорема В. А. Котельникова имеет важное теоретическое и практическое значение: дает возможность правильно осуществить дискретизацию аналогового сигнала и определяет оптимальный способ его восстановления на приемном конце по отсчетным значениям.

Согласно одной из наиболее известных и простых интерпретаций теоремы Котельникова, произвольный сигнал u(t), спектр которого ограничен некоторой частотой Fe может - быть полностью восстановлен по последовательности своих отсчетных значений, следующих с интервалом времени

Интервал дискретизации и частоту Fe (1) в радиотехнике часто называют соответственно интервалом и частотой Найквиста. Аналитически теорема Котельникова представляется рядом

где k - номер отсчета; - значение сигнала в точках отсчета - верхняя частота спектра сигнала.

Частотное представление дискретных сигналов .

Большинство сигналов можно представить в виде ряда Фурье: