Программы,... Онлайн-сервисы Интернет

Инфракрасный свет – практикум невидимо тёплого излучения. Смотрим на мир глазами рака-богомола: ближний инфракрасный диапазон Что делать если вижу инфракрасное излучение

Несмотря на то, что человеческий глаз способен воспринимать десятки тысяч цветов и оттенков, человек видит окружающий мир далеко не во всех его красках и тонах, поскольку кроме видимого света, солнечный свет также содержит невидимые ультрафиолетовые и инфракрасные лучи. Однако некоторые живые существа в ходе эволюции приобрели способность видеть в коротко- (УФ) и длинноволновом (ИК) электромагнитном излучении.

Кто видит в ультрафиолете

На сегодняшний день учеными усыновлено, что видит ультрафиолетовые лучи способны:

  • насекомые и прочие беспозвоночные;
  • многие виды птиц;
  • различные обитатели подводного мира, включая рыб, моллюсков и ракообразных;
  • рептилии.

Также видеть в УФ излучении способны и некоторые позвоночные обитатели Земли, включая млекопитающих. Например, способностью видеть в ультрафиолетовом спектре электромагнитного излучения обладают собаки и кошки, северные олени, а также многие разновидности грызунов.

При всем этом, важно отметить, что способность видеть ультрафиолет – это не прихоть эволюции, а инструмент выживания живых организмов. Например, летающие насекомые используют ее для поиска открытого для полетов пространства, ракообразные – для поиска убежищ, а рептилии и позвоночные – для поиска пищи. Пчелы же используют свою способность видеть УФ лучи для сбора нектара с цветков.

Кто видит инфракрасный свет

Нас сегодняшний день науке не известно ни одного животного, способного видеть инфракрасный свет, поскольку для фокусирования такого света на сетчатке глаза необходима совершенно иная нежели видимого света линза. И даже наоборот, глаза животных, в том числе человека, способных видеть красный свет, развили защиту от ИК лучей, поскольку они размывали бы изображение на сетчатке.

Иногда инфракрасным зрением называют способность некоторых животных чествовать тепловое излучение, что происходит за счет расположенных на поверхности верхних покровов сенсоров. Такая способность свойственна некоторым видам змей и летучих мышей. Считается, что поступающая от тепловатых сенсоров информация обрабатывается вместе в мозге вместе со зрительной, поэтому имеющие тепловые сенсоры живые существа могут видеть несфокусированное изображение теплых объектов.

Как увидеть инфракрасный свет

В лазере фотон света, сталкиваясь с возбужденным атомом среды, стимулирует испускание другого фотона той же частоты. Вторичные фотоны в свою очередь вызывают испускание фотонов другими возбужденными атомами - в результате процесс излучения света идет лавинообразно. Но попробуем рассмотреть случай, когда активная среда лазера находится в докритическом состоянии, т. е. слишком разрежена, чтобы поддерживать лавинообразный процесс. В такой среде фотон может столкнуться с невозбуждеиным атомом, который, поглотив этот фотон, переходит в возбужденное состояние. Другой фотон, столкнувшись с этим возбужденным атомом, теперь может стимулировать эмиссию, и два фотона будут двигаться вместе, парой. В несколько более плотной среде и при чуть более интенсивной накачке эта пара фотонов может столкнуться с еще одним возбужденным атомом, результатом чего будет фотонный триплет. В целом, активную среду лазера покидает примерно столько же фотонов, сколько вошло в нее, однако выходящие фотоны образуют когерентные пары и тройки.

Такой «сгруппированный» свет обладает удивительными свойствами. Прежде всего он совершенно непривычен для глаза. Так, красный сгруппированный свет будет обычным образом отражаться от красных предметов. Но, поскольку каждая пара «красных» фотонов имеет в сумме энергию, равную энергии одного «синего» фотона, такой свет за счет двухфотонного поглощения станет возбуждать также рецепторы, чувствительные к синему цвету. Предмет, таким образом, будет одновременно выглядеть и красным, и синим, - наверное, переливчато-фиолетовым. Больше всего, впрочем, Дедала занимает инфракрасный сгруппированный свет. Все окружающие нас объекты в изобилии испускают длинноволновое инфракрасное излучение. Достаточно поэтому перед любым предметом поместить «группирователь фотонов» фирмы КОШМАР, который собирает фотоны в группы, суммарная энергия которых лежит в видимой области спектра, - и вот вам бесплатное освещение! Правда, в сгруппированном ИК-свете все предметы, скорее всего, будут иметь жуткий вид, так что лучше будет, если энергия группы фотонов придется на область ультрафиолета. Тогда, используя обычный люминофор, как в лампах дневного света, можно возбуждать его за счет многофотонного поглощения и получать видимый свет. Этот изящный прибор преобразует бесполезный инфракрасный фон в видимый свет - подобно тепловому насосу, перекачивающему тепло от тел с меньшей температурой к телам с более высокой температурой. Согласно законам термодинамики, эти устройства могут отбирать у окружающей среды гораздо больше энергии (тепла и света), чем необходимо для приведения их в действие.

New Scientist, June 26, 1980

Из записной книжки Дедала

Рассмотрим активную среду, в которой N 1 атомов находятся в основном состоянии и N 2 - в возбужденном состоянии с энергией Е. Рабочая частота равна в таком случае v = E/h, и если этой частоте соответствует плотность энергии?v, то интенсивность возбуждения N 1 -> N 2 составит BN 1 ?v, где В - вероятность перехода. Аналогично интенсивность стимулированной эмиссии равна BN 2 ?v. Пусть в систему входит n фотонов. Для каждого из иих вероятность быть поглощенным при переходе атома из состояния 1 в состояние 2 пропорциональна BN 1 ?; обозначим эту вероятность через KN 1 . Тогда число фотонов, поглощенных в системе, равно nKN 1 для малых KN 1 , а n(1 – KN 1) фотонов проходят через всю среду. Вероятность того, что каждый из этих фотонов стимулирует испускание фотона возбужденным атомом, равна KN 2 . Таким образом, наиболее вероятное число пар фотонов, выходящих из среды, равно n(KN 2)?(1 - KN 1). Иначе говоря, мы пустили в среду n фотонов и получили на выходе n(KN 2)?(1 – KN 1 фотонных пар; таким образом, кпд нашего лазера по «группированию» фотонов составляет 2/KN 2 (1 – KN 1). Эта величина имеет максимум при N 2 = N 1 , т.е. когда излучение накачки, переводящее атомы в возбужденное состояние за счет переходов N 1 -> N 3 -> N 2 , чуть-чуть недостаточно для создания инверсной населенности, т. е. система находится немного ниже порога генерации лазерного излучения. При KN 1 = КN 2 = 0,5 максимальный кпд = 0,5, т. е. можно рассчитывать, что примерно половина общего числа попадающих в систему фотонов будет сгруппирована. На практике будут возникать группы не только из двух, но и из трех и более фотонов, но даже с учетом этого наша схема выглядит вполне реальной.

Как будут вести себя фотонные пары? В физических процессах (преломление, рассеяние и т. д.) они должны вести себя точно так же, как образующие фотоны, однако в химических процессах (поглощение и т. д.) они, скорее всего, будут проявлять тенденцию к двухфотонному поглощению, и поэтому каждая пара поведет себя как один фотон с вдвое большей частотой. На этой основе, вероятно, можно создать уличные фонари, излучающие сгруппированный инфракрасный свет, который легко проходит сквозь туман и в то же время хорошо воспринимается глазом. А как бы вы отнеслись к «антизонтику», преобразующему свет пасмурного дня в ультрафиолетовое излучение для загара? Наконец, поскольку сгруппированные фотоны когерентны с тем фотоном, который первоначально попал в среду, соответствующие очки позволят непосредственно наблюдать изображение, полученное в инфракрасных лучах.

Дедал получает письмо

Майрон Л. Уолбаршт, профессор офтальмологии и биомедицинской техники, Медицинский центр университета Дьюка, Дарем, Сев. Каролина, США 23 июля 1980

Дорогая Ариадна!

Ваш друг Дедал рассматривал (с. 448, 26 июня 1980) использование сгруппированного света для возбуждения синих рецепторов глаза в результате двухфотонного поглощения и даже допускал возможность использования длинноволнового инфракрасного излучения для получения видимого света. Я прилагаю копию одной из своих опубликованных работ «Зрительная чувствительность глаза к инфракрасному излучению» (Journal of the Optical Society of America , 66, 1976, p. 339), в которой показано, что это действительно возможно. Надеюсь, что Дедал будет продолжать свои изыскания, но ему следует сознавать, что в наши дни наука движется вперед так быстро, что даже мечтатель может отстать от жизни.

Искренне Ваш М. Уолбаршт

(В дальнейшем сгруппированный свет будет пролит на вопрос о приоритете в статье «Еще раз об инфракрасном зрении».)

Из книги Тайны лунной гонки автора Караш Юрий Юрьевич

Соглашения в рамках ООН: свет в конце тоннеля или тупика? «Тоннель»Не хотелось, чтобы у читателя складывалось впечатление, будто шестидесятые годы были для советско-американского сотрудничества в космосе временем бесплодных надежд, утраченных иллюзий и упущенных

Из книги Парад всемирных выставок автора Мезенин Николай Александрович

Париж 1878. „РУССКИЙ СВЕТ" Во Франции 1873 - 1879 гг. в целом были периодом кризиса и упадка, что наблюдалось и по всей Европе. Но Маркс, имея в виду 1878 г., отмечал, что в течение этого «года, столь неблагоприятного для всех других предприятий, железные дороги процветали; но это

Из книги CCTV. Библия видеонаблюдения [Цифровые и сетевые технологии] автора Дамьяновски Владо

2. Свет и телевидение Да будет свет. Немного историиСвет - это одно из основных и величайших явлений природы, свет является не только необходимым условием жизни на планете, но и играет важную роль в техническом прогрессе и изобретениях в сфере визуальной коммуникации:

Из книги История выдающихся открытий и изобретений (электротехника, электроэнергетика, радиоэлектроника) автора Шнейберг Ян Абрамович

ГЛАВА 8 Человеческий гений создает электрический свет, «подобный солнечному» Создание П.Н. Яблочковым «электрической свечи»Создание источников электрического освещения является одним из основополагающих открытий в истории человечества. Первым, кто произнес

Был вариант купить дешевую VGA разрешения цифровую камеру с видоискателем, но тогда это была бы еще одна вещь, чтобы носить с собой.
Недавно в аэропорту, я попытался выключить телевизор с громкой болтовней людей своим универсальным контроллером ТВ-Be-Gone, но устройство не сработало, чтобы выключить телевизор, поэтому я решил попытаться увидеть, работает он или нет. Я достал свой iPhone 4, открыл приложение камеры, направил камеру на ТВ-Be-Gone с ИК подсветкой, и нажал кнопку на ТВ-Be-Gone. Я не увидел свет от ИК светодиода в видоискателе iPhone автора.
Тогда мне пришло в голову попробовать фронтальную камеру FaceTim. Я нажал кнопку камеры переключателя на экране iPhone и направил на FaceTime камеру, по-прежнему мигающую ИК подсветку ТВ-Be-Gone, и наконец я смог увидеть свет, который выходил из ИК излучателя!
Следующие шаги будут повторять описанные выше действия, и покажут вам, как увидеть инфракрасный свет на вашем стандартном iPhone 4, и, возможно, других смартфонах и планшетах тоже.

Шаг 1. Попробуйте, используя заднюю панель камеры, увидеть свет от инфракрасного светодиода

На вашем iPhone, запустите приложение Камера, и наведите камеру на светодиодные излучатели ТВ-пульта дистанционного управления.
Когда вы смотрите на экран iPhone, нажмите несколько кнопок на пульте дистанционного управления.
Несмотря на то, что пульт дистанционного управления, вероятно излучает яркий инфракрасный луч, вы не можете видеть это вашими глазами, потому что ваши глаза не чувствительны к свету в частоте инфракрасного излучения (около 940 нм для пульта дистанционного управления).
Основная камера вашего iPhone не может видеть инфракрасный свет, потому что Apple, добавил фильтр на объектив, который блокирует инфракрасный свет, поэтому инфракрасные лучи не видны на экране.

Шаг 2. Теперь попробуйте с помощью фронтальной камеры FaceTime увидеть свет от инфракрасного светодиода

Теперь нажмите кнопку "переключатель камеры" - значок в верхнем правом углу камеры iPhone приложения таким образом, чтобы на экране отображался вид с FaceTime камеры, так что вы, вероятно, увидите себя на экране.
Теперь направьте камеру FaceTime на светодиодный LED вашего пульта дистанционного управления телевизора и нажмите кнопку на пульте дистанционного управления.
Ваш глаз не может видеть инфракрасный свет, но теперь вы будете видеть инфракрасный свет, который появляется в видоискателе, как яркий белый свет.
Оказывается, что FaceTime камера на iPhone 4 не имеет ИК фильтра! Ура!

Инфракрасный свет визуально недоступен зрению человека. Между тем длинные инфракрасные волны воспринимаются человеческим организмом как тепло. Некоторыми свойствами видимого света обладает инфракрасный свет. Излучение этой формы поддаётся фокусировке, отражается и поляризуется. Теоретически ИК-свет больше трактуется как инфракрасная радиация (ИР). Космическая ИР занимает спектральный диапазон электромагнитного излучения 700 нм — 1 мм. ИК-волны длиннее волн видимого света и короче радиоволн. Соответственно, частоты ИР выше частот микроволн и ниже частот видимого света. Частота ИР ограничена диапазоном 300 ГГц — 400 ТГц.

Инфракрасные волны удалось обнаружить британскому астроному Уильяму Гершелю . Открытие было зарегистрировано в 1800 году. Используя стеклянные призмы в своих опытах, учёный таким способом исследовал возможности разделения солнечного света на отдельные компоненты.

Когда Уильяму Гершелю пришлось измерять температуру отдельных цветов, обнаружился фактор увеличения температуры при последовательном прохождении следующего ряда:

  • фиолет,
  • синька,
  • зелень,
  • желток,
  • оранж,
  • красный.

Волновой и частотный диапазон ИК-радиации

Исходя из длины волны, учёные условно делят инфракрасное излучение на несколько спектральных частей. При этом нет единого определения границ каждой отдельной части.

Шкала электромагнитного излучения: 1 — радиоволны; 2 — микроволны; 3 — ИК-волны; 4 — видимый свет; 5 — ультрафиолет; 6 — лучи x-ray; 7 — гамма лучи; В — диапазон длин волн; Э — энергетика

Теоретически обозначены три волновых диапазона:

  1. Ближний
  2. Средний
  3. Дальний

Ближний ИК-диапазон отмечен длинами волн, приближенных до конечной части спектра видимого света. Примерный расчётный отрезок волны здесь обозначен длиной: 750 — 1300 нм (0,75 — 1,3 мкм). Частота излучения составляет примерно 215-400 Гц. Короткий ИК-диапазон излучат минимум тепла.

Средний ИК-диапазон (промежуточный), охватывает длины волн 1300-3000 нм (1,3 — 3 мкм). Частоты здесь измеряются диапазоном 20-215 ТГц. Уровень излучаемого тепла относительно невысок.

Дальний ИК-диапазон наиболее близок к диапазону микроволн. Расклад: 3-1000 мкм. Частотный диапазон 0,3-20 ТГц. Эту группу составляют короткие длины волн на максимальном частотном отрезке. Здесь излучается максимум тепла.

Применение инфракрасной радиации

ИК-лучам нашлось применение в различных сферах. Среди наиболее известных устройств — , тепловизоры, оборудование ночного видения и т.п. Коммуникационным и сетевым оборудованием ИК-свет используется в рамках проводных и беспроводных операций.


Пример работы электронного прибора — тепловизора, принцип действия которого основан на использовании инфракрасного излучения. И это лишь отдельно взятый пример из множества других

Пульты дистанционного управления оснащаются системой ИК-связи ближнего действия, где сигнал передаётся через ИК-светодиоды. Пример: привычная бытовая техника – телевизоры, кондиционеры, проигрыватели. Инфракрасным светом передаются данные по волоконно-оптическим кабельным системам.

Кроме того, излучение ИК-диапазона активно используется исследовательской астрономией для изучения космоса. Именно благодаря ИК-радиации удаётся обнаруживать космические объекты, невидимые глазу человека.

Малоизвестные факты, связанные с ИК-светом

Глаза человека действительно не могут видеть инфракрасные лучи. Но «видеть» их способна кожа тела человека, реагирующая на фотоны, а не только на тепловое излучение.

Поверхность кожи фактически выступает «глазным яблоком». Если солнечным днём выйти на улицу, закрыть глаза и протянуть к небу ладони, без особого труда можно обнаружить месторасположение солнца.

Зимой в комнате, где температура воздуха составляет 21-22ºС, будучи тепло одетыми (свитер, брюки). Летом в той же комнате, при той же температуре, люди также ощущают комфорт, но в более лёгкой одежде (шорты, футболка).

Объяснить сей феномен просто: несмотря на одинаковую температуру воздуха, стены и потолок помещения летом излучают в большем количестве волны дальнего ИК-диапазона, несомые солнечным светом (FIR – Far Infrared). Поэтому телом человека при одинаковых температурах, летом воспринимается больше тепла.


ИК-тепло воспроизводится любым живым организмом и неживым предметом. На экране тепловизора этот момент отмечается более чем отчётливо

Пары людей, спящие в одной кровати, непроизвольно являются передатчиками и приемниками FIR-волн по отношению друг к другу. Если человек находится в кровати один, он действует как передатчик FIR-волн, но уже не получает такие же волны в ответ.

Когда люди беседуют друг с другом, они непроизвольно отправляют и получают вибрации FIR-волн один от другого. Дружеские (любовные) объятия также активируют передачу FIR-излучения между людьми.

Как воспринимает ИК-свет природа?

Люди не в состоянии видеть световые лучи ИК-диапазона, но змеи семейства гадюковых или виперовых (например, гремучие) имеют сенсорные «впадины», которые используются для получения изображения в инфракрасном свете.

Это свойство позволяет змеям в полной темноте обнаруживать теплокровных животных. Змеи с двумя сенсорными «впадинами», как предполагается наукой, имеют некоторое восприятие глубины инфракрасного диапазона.


Свойства ИК змеи: 1, 2 — чувствительные зоны сенсорной впадины; 3 — мембранная впадина; 4 — внутренняя полость; 5 — MG волокно; 6 — наружная полость

Рыба успешно использует свет ближней области спектра (NIR – Near Infrared) для захвата добычи и для ориентации в акватории водоёмов. Это чувство NIR помогает рыбе безошибочно ориентироваться в условиях слабого освещения, в темноте либо в мутной воде.

Инфракрасное излучение играет важную роль для формирования погоды и климата Земли, также как солнечный свет. Общая масса солнечного света, поглощаемого Землей, в равном количестве ИК-излучения должна перемещаться от Земли обратно в космос. Иначе неизбежно глобальное потепление или глобальное похолодание.

Очевидна причина, по которой воздух быстро охлаждается сухой ночью. Низкий уровень влажности и отсутствие облаков на небе открывают свободный путь ИК-радиации. Инфракрасные лучи быстрее выходят в космическое пространство и, соответственно, быстрее уносят тепло.

Значительная часть , приходящая к Земле – это именно инфракрасный свет. Любой природный организм или предмет обладает температурой, а это значит — выделяет ИК-энергию. Даже предметы, априори являющиеся холодными (например, кубики льда), излучают ИК-свет.

Технический потенциал инфракрасной зоны

Технический потенциал ИК-лучей безграничен. Примеров масса. Инфракрасное отслеживание (самонаведение) применяется в системах пассивного управления ракетами. Электромагнитное излучение от цели, получаемое в инфракрасной части спектра, используется в этом случае.


Систем отслеживания цели: 1, 4 — камера сгорания; 2, 6 — относительно длинный выхлоп пламени; 5 — холодный поток, обходящий горячую камеру; 3, 7 — назначенная важная ИК сигнатура

Спутники погоды, оборудованные сканирующими радиометрами, производят тепловые изображения, которые затем позволяют аналитической методикой определять высоты и типы облаков, рассчитывать температуру суши и поверхностных вод, определять особенности поверхности океана.

Инфракрасное излучение является наиболее распространенным способом дистанционного управления различными приборами. На базе технологии FIR разрабатываются и выпускаются множество продуктов. Особо здесь отличились японцы. Вот лишь несколько примеров, популярных в Японии и по всему миру:

  • специальные накладки и обогреватели FIR;
  • пластины FIR для сохранения рыбы и овощей свежими долгое время;
  • керамическая бумага и керамика FIR;
  • тканевые FIR перчатки, куртки, автомобильные сиденья;
  • парикмахерский FIR-фен, снижающий повреждение волос;

Инфракрасная рефлектография (арт-консервация) применяется для изучения картин, помогает выявить лежащие в основе слои, не разрушая структуры. Этот приём, помогает обнаружить детали, скрытые под рисунком художника.

Таким способом определяется, является ли текущая картина оригинальным художественным произведением или всего лишь профессионально сделанной копией. Определяются также изменения, связанные с реставрационной работой над произведениями искусства.

ИК-лучи: влияние на здоровье людей

Благоприятное воздействие солнечного света на здоровье человека подтверждено научно. Однако чрезмерное пребывание под солнечным излучением потенциально опасно. Солнечный свет содержит ультрафиолетовые лучи, действие которых сжигает кожу тела человека.


Инфракрасные сауны массового пользования широко распространены в Японии и Китае. И тенденция на развитие этого способа оздоровления только усиливается

Между тем инфракрасное излучение дальнего диапазона волн обеспечивает все преимущества для здоровья, получаемые от естественного солнечного света. При этом полностью исключается опасное воздействие солнечной радиации.

Применением технологии воспроизводства ИК-лучей, достигается полный контроль температуры (), неограниченный солнечный свет. Но это далеко не все известные факты преимуществ инфракрасного излучения:

  • Инфракрасные лучи дальнего диапазона укрепляют сердечно-сосудистую систему, стабилизируют сердечный ритм, увеличивают сердечный выброс, уменьшая при этом диастолическое артериальное давление.
  • Стимуляция сердечно-сосудистой функции инфракрасным светом дальнего диапазона — идеальный способ поддержания в норме сердечно-сосудистой системы. Есть опыт американских астронавтов во время длительного космического полета.
  • ИК-лучи дальнего инфракрасного диапазона с температурой выше 40°C ослабляют и в конечном итоге убивает раковые клетки. Этот факт подтвержден Американской онкологической ассоциацией и Национальным институтом рака.
  • Инфракрасные сауны часто используются в Японии и Корее (терапия гипертермии или Waon-терапия) для лечения от сердечно-сосудистых заболеваний, особенно в части хронической сердечной недостаточности и периферических артериальных заболеваний.
  • Результаты исследований, опубликованные в журнале «Нейропсихиатрическая болезнь и лечение », показывают инфракрасные лучи как «медицинский прорыв» в лечении черепно-мозговых травм.
  • Инфракрасная сауна считается в семь раз более эффективной при выводе из организма тяжелых металлов, холестерина, спирта, никотина, аммиака, серной кислоты и других токсинов.
  • Наконец, FIR-терапия в Японии и Китае вышла на первое место среди эффективных способов лечения астмы, бронхита, простуды, гриппа, синусита. Отмечено, что FIR-терапия убирает воспаления, отеки, слизистые закупорки.

Инфракрасный свет и продолжительность жизни 200 лет

Умеем делать? Не-а.

Мы все привыкли к тому, что цветы красные, черные поверхности не отражают свет, кока-кола непрозрачная, горячим паяльником нельзя ничего осветить как лампочкой, а фрукты можно легко отличить по их цвету. Но давайте представим на минутку, что мы может видеть не только видимый диапазон(хи-хи), но и ближний инфракрасный. Ближний инфракрасный свет - это вовсе не то, что можно увидеть в тепловизоре . Он скорее ближе в видимому свету, чем к тепловому излучению. Но у него есть ряд интересных особенностей - часто совершенно непрозрачные в видимом диапазоне предметы отлично просвечиваются в инфракрасном свете - пример на первой фотографии.
Черная поверхность плитки прозрачна для ИК, и с помощью камеры, у которой снят с матрицы фильтр можно рассмотреть часть платы и нагревательный элемент.

Для начала - небольшое отступление. То, что мы называем видимым светом - всего лишь узкая полоска электромагнитного излучения .
Вот, например я упер с википедии такую картинку:


Мы просто не видим ничего кроме этой маленькой части спектра. И фотоаппараты, которые делают люди - изначально кастрированы, чтобы добиться похожести фотоснимка и человеческого зрения. Матрица фотоаппарата способна видеть инфракрасный спектр, но специальным фильтром(он называется Hot-mirror) эта возможность убирается - иначе снимки будут выглядеть несколько непривычно для человеческого глаза. А вот если этот фильтр убрать…

Камера

Подопытным выступил китайский телефон, который изначально предназначался для обзора. К сожалению, выяснилось что радиочасть у него жестоко глючит - то принимает, то не принимает звонки. Само-собой, писать я про него не стал, но китайцы не захотели ни выслать замену, ни забрать этот. Так он остался у меня.
Разбираем телефон:


Вытаскиваем камеру. Паяльником и скальпелем аккуратно отделяем фокусировочный механизм(сверху) от матрицы.

На матрице должно быть тонкое стеклышко, возможно с зеленоватым или красноватым отливом. Если там его не - посмотрите на часть с «объективом». Если нет и там, то скорее всего все плохо - оно напылено на матрицу или на одну из линз, и снять ее будет более проблематично, чем найти нормальную камеру.
Если оно есть - нам надо его как можно более аккуратно снять, не повредив матрицу. У меня оно треснуло при этом, и пришлось долго выдувать осколки стекла с матрицы.

К сожалению, я потерял свои фотки, поэтому покажу фотку irenica из ее блога , которая делала тоже самое, но с веб-камерой.


Вот тот осколок стекла в углу - как раз и есть фильтр. Был фильтр.

Собираем все обратно, учитывая то, что при изменении зазора между объективом и матрицей камера не сможет правильно сфокусироваться - у вас получится или близорукая, или дальнозоркая камера. Мне потребовалось три раза собрать-разобрать камеру, чтобы добиться корректно работы механизма автофокуса.

Вот теперь можно окончательно собрать телефон, и начать исследовать этот новый мир!

Краски и вещества

Кока-кола внезапно стала полупрозрачной. Сквозь бутылку проникает свет с улицы, а через стакан видны даже предметы в комнате.

Плащ из черного стал розовым! Ну, кроме пуговиц.

Черная часть отвертки тоже посветлела. А вот у телефона эта участь постигла только кольцо джойстика, остальная часть покрыта другой краской, которая ИК не отражает. Так же как и пластик док-станции для телефона на заднем плане.

Таблетки из зеленых превратились в сиреневые.

Оба кресла в офисе тоже превратились из готично-черных в непонятные цветные.

Искусственная кожа осталась черной, а ткань - оказалось розовой.

Рюкзаку(он есть на заднем плане предыдущей фотки) стало еще хуже - он практически весь стал сиреневым.

Как и сумка для фотоаппарата. И обложка электронной книги

Коляска из синий превратилась в ожидаемо-фиолетовую. А световозвращающая нашивка, хорошо видимая в обычную камеру совсем не видна в ИК.

Красная краска, как близкая к нужной нам части спектра, отражая красный свет, захватывает и часть ИК. В итоге красный цвет заметно светлеет.

Причем таким свойством обладает все красная краска, что я замечал.

Огонь и температура

Еле тлеющая сигарета выглядит в ИК как очень яркая точка. Стоят ночью люди на остановке с сигаретами - а их кончики освещают им лица.

Зажигалка, свет которой на обычной фотографии вполне сравним с фоновым освещением в ИК режиме перекрыла жалкие потуги фонарей на улице. На фотографии даже не видно фона - умный фотоаппарат отработал изменение яркости, уменьшив экспозицию.

Паяльник при разогреве светится как небольшая лампочка. А в режиме поддержания температуры имеет нежно-розовый свет. А еще говорят что пайка не для девушек!

Горелка выглядит практически одинаково - ну разве что факел чуть дальше(на конце температура падает довольно быстро, и на определенном этапе уже перестает светить в видимом свете, но еще светит в ИК).

А вот если нагреть горелкой стеклянную палочку - стекло начнет светиться в ИК довольно ярко, и палочка будет выступать волноводом(яркий кончик)

Причем палочка будет светиться довольно долго и после прекращения нагрева

А фен термовоздушной станции вообще выглядит как фонарик с сеточкой.

Лампы и свет

Буква М на входе в метро горит гораздо ярче - в ней все еще используются лампы накаливания. А вот вывеска с название станции почти не изменила яркость - значит там люминесцентные лампы.

Двор ночью выглядит немного странно - сиреневая трава и гораздо светлее. Там, где камера в видимом диапазоне уже не справляется и вынуждена повышать исо(зернистость в верхней части), камере без ИК фильтра хватает света с запасом.

На этой фотографии получилась забавная ситуация - одно и то же дерево освещают два фонаря с разными лампами - слева лампой НЛ (оранжевая уличная), а справа - светодиодной. У первой в спектре излучения есть ик, и поэтому на фотографии листва под ней выглядит светлофиолетовой.


А у светодиодной нет ИК, а только видимый свет(поэтому лампы на светодиодах более энергоэффективны - энергия не тратится на излучение ненужного излучения, которое человек все равно не увидит). Поэтому листве приходится отражать то, что есть.

А если посмотреть на дом вечером, то можно заметить, что разные окна имеют разный оттенок - одни ярко-фиолетовые, а другие желтые или белые. В тех квартирах, чьи окна светятся фиолетовым(голубая стрелка) до сих пор используют лампы накаливания - горячая спираль светит всем подряд равномерно по всему спектру, захватывая и УФ и ИК диапазон. В подъездах используются энергосберегающие лампы холодного белого света(зеленая стрелка), а в части квартир - люминесцентные теплого света(желтая стрелка).

Восход. Просто восход.

Закат. Просто закат. Интенсивности солнечного света недостаточно для тени, а вот в инфракрасном диапазоне(может из-за разного преломления света с разной длинной волны, или из-за проницаемости атмосферы) тени видны отлично.

Занимательно. У нас в коридоре одна лампа сдохла и свет еле-еле, а вторая - нет. В инфракрасном свете наоборот - дохлая лампа светит гораздо ярче, чем живая.

Домофон. Точнее, штука рядом с ним, которая с камерами и подсветкой, которая включается в темноте. Она такая яркая, что видна и на обычную камеру, но для инфракрасной - это почти прожектор.

Подсветку можно включить и днем, закрыв пальцем датчик освещения.

Подсветка видеонаблюдения. У самой камеры подсветки не было, поэтому ее сколхозили из говна и палок. Она не очень яркая, потому что снята днем.

Живая природа

Волосатый киви и зеленый лайм по цвету почти не отличаются друг от друга.

Зеленые яблоки стали желтыми, а красные - ярко-сиреневыми!

Белые перцы стали желтыми. А привычные зеленый огурцы - каким-то инопланетным фруктом.

Яркие цветки стали практически однотонными:

Цветок почти не отличается по цвету от окружающей травы.

Да и яркие ягоды на кусте стало очень трудно увидеть в листве.

Да что ягоды - даже разноцветная листва стала однотонной.

Короче, выбрать фрукты по их цвету уже не получится. Придется спрашивать продавца, у него-то нормальное зрение.

Но почему на фотографиях все розовое?

Для ответа на этот вопрос нам придется вспомнить строение матрицы фотоаппарата. Я опять спер картинку из википедии.


Это фильтр байера - массив фильтров окрашенных в три разных цвета, расположенных над матрицей. Матрица воспринимает весь спектр одинаково, и только фильтры помогают построить полноцветную картинку.
Но инфракрасный спектр фильтры пропускают неодинаково - синие и красные больше, а зеленые меньше. Камера думает, что вместо инфракрасного излучения на матрицу попадает обычный свет и пытается формировать цветную картинку. На фотографиях, где яркость ИК-излучения минимальна обычные цвета еще пробиваются - на фотографиях можно заметить оттенки цветов. А там, где яркость большая, например на улице под ярким солнцем - ИК попадает на матрицу именно в той пропорции, которую пропускают фильтры, и которое образует розовый или фиолетовый цвет, забивая своей яркостью всю остальную цветовую информацию.
Если фотографировать с надетым на объектив фильтром - пропорция цветов получается другой. Например вот такой:


Эту картинку я нашел в сообществе ru-infrared.livejournal.com
Там же еще куча картинок снятых в инфракрасном диапазоне. Зелень на них белая потому, что ББ выставляется как раз по листве.

Но почему растения получаются такими яркими?

На самом деле, этот вопрос состоит из двух - почему зелень выглядит ярко и почему фрукты яркие.
Зелень яркая потому что в инфракрасной части спектра поглощение минимально(а отражение - максимально, что и показывает график):

Виновен в этом хлорофил. Вот его спектр поглощения:

Скорее всего это связано с тем, что растение защищается от высокоэнергетического излучения, подстраивая спектры поглощения таким образом, чтобы получить и энергию для существования и не быть засушенным от слишком щедрого солнца.

А это спектр излучения солнца(точнее, той части солнечного спектра, который достигает земной поверхности):

А почему ярко выглядит фрукты?

У плодов в кожуре зачастую нет хлорофилла, но тем не менее - они отражают ИК. Ответственно за это вещество, которое называется эпикутикулярный воск - тот самый белый налет на огурцах и сливах. Кстати, еспи погуглить «белый налет на сливах», то результатами будет что угодно, но только не это.
Смысл в этом примерно такой же - надо и окраску сохранить, которая может быть критична для выживания, и не дать солнцу высушить плод еще на дереве. Сушеный чернослив на деревьях это, конечно, отлично, но немного не вписывается в жизненные планы растения.

Но блин, почему рака-богомола?

Сколько я не искал, какие животные видят инфракрасный диапазон, мне попадались только раки-богомолы(ротоногие). Вот такие лапочки:

Кстати, если вы не хотите пропустить эпопею с чайником или хотите увидеть все новые посты нашей компании, вы можете подписаться на на странице компании (кнопка «подписаться»)

Теги: Добавить метки